标题: | Balanced Binary Tree |
通过率: | 32.3% |
难度: | 简单 |
Given a binary tree, determine if it is height-balanced.
For this problem, a height-balanced binary tree is defined as a binary tree in which the depth of the two subtrees of every node never differ by more than 1.
平衡二叉树。这个可以由二叉树深度来计算,再二叉树深度计算中每次进行深度比较取深度较深的一个,那么平衡二叉树再比较深度时就是A-B绝对值超过一的话就不是二叉树了。立马返回-1 ,当左右子树有一边深度值是-1时立马终止,返回此树非平衡二叉树,如果A-B绝对值总是在0,1,-1三个数之中,那么继续深度递归判断,具体代码如下:
1 /** 2 * Definition for binary tree 3 * public class TreeNode { 4 * int val; 5 * TreeNode left; 6 * TreeNode right; 7 * TreeNode(int x) { val = x; } 8 * } 9 */10 public class Solution {11 public boolean isBalanced(TreeNode root) {12 if(root==null) return true;13 if(height(root)==-1) return false;14 else return true;15 16 }17 public int height(TreeNode root){18 if(root==null) return 0;19 int depth1=0;20 int depth2=0;21 depth1=height(root.right);22 depth2=height(root.left);23 if(depth1==-1||depth2==-1) return -1;24 if((depth1-depth2>1 )||(depth1-depth2)<-1)25 return -1;26 else{27 if(depth1>depth2)28 return depth1+1;29 else30 return depth2+1;31 }32 33 }34 }